

LUND UNIVERSITY

New approach to photoacoustic imaging for medical applications

Stefan Kröll

Quantum Information Group Dept. of Physics, Lund University

Knut och Alice

Wallenbergs

Stiftelse

Funded by the European Union

- Objective
- Motivation
- Optical properties of tissue
- Photo-acoustic tomography (PAT)
- Ultrasound optical tomography (UOT)
- Details UOT
- Current status and plans

General objective

- Developing a technique that can perform optical imaging with sub mm resolution down to substantial depths in the body
- Optical imaging is able to provide molecule specific information not obtainable by e.g. X-rays, ultrasound or magnetic resonance imaging

- Objective
- Motivation
- Optical properties of tissue
- Photo-acoustic tomography (PAT)
- Ultrasound optical tomography (UOT)
- Details UOT
- Current status and plans

LUND UNIVERSITY

Motivation for measuring tissue oxygen saturation

- Ischemia, i.e. the restriction of oxygenated blood in an area of tissue, is a cause of cardiovascular disease which is the most prevalent cause of death in Sweden for both men and women (Socialstyrelsen).
- The second most prevalent cause of death in Sweden is tumors which are often distinguished by having centers of dead, deoxygenated tissue.
- At Skåne University Hospital there are ~100 emergency patients per day (close to half of the total number) with symptoms related to ischemia possibly indicating stroke, heart failure or similar conditions

- Objective
- Motivation
- Optical properties of tissue
- Photo-acoustic tomography (PAT)
- Ultrasound optical tomography (UOT)
- Details UOT
- Current status and plans

Light scattering

- Living tissue heavily scatters light
- Both scattering and absorption will limit our measurement abilities
- For example the spatial resolution in trans-illumination imaging is approximately one fifth of the depth

Courtesy: David Hill

- Objective
- Motivation
- Optical properties of tissue
- Photo-acoustic tomography (PAT)
- Ultrasound optical tomography (UOT)
- Details UOT
- Current status and plans

Photoacoustic tomography (PAT)

- Two PAT systems acquired by the Dept of Clinical Sciences (Bo Baldetorp)
- Used in clinical investigations of Giant cell arterisis in the temporal artery (Malin Malmsjö, Ophtalmology)

https://en.wikipedia.org/wiki/Photoacoustic_imaging

Lund University

Photo-acoustic tomography (PAT) Vasculatory anatomy in a mouse ear

70 minutes

Hu, Maslow & Wang, Opt Lett. 36, 1134 (2011)

What might we wish to improve?

• We would like to reach large depths and to carry out measurements within a short time

Ultrasound optical tomography (UOT)

- Objective
- Motivation
- Optical properties of tissue
- Photo-acoustic tomography (PAT)
- Ultrasound optical tomography (UOT)
- Details UOT
- Current status and plans

Penetration depth & S/N for PAT & UOT

Light source inside – Double distance

Spatial resolution: ~10 elements, ~3x3x3 mm each, measurement time, ~1s

- Objective
- Motivation
- Optical properties of tissue
- Photo-acoustic tomography (PAT)
- Ultrasound optical tomography (UOT)
- UOT details
- Current status and plans

Rare earth doped crystals

Rare earth crystals

Conceptual picture of a crystal

L – crystal length α – absorption coefficient **Frequency** (MHz)

Spectral filter delay

LUND UNIVERSITY Experiment

- Objective
- Motivation
- Optical properties of tissue
- Photo-acoustic tomography (PAT)
- Ultrasound optical tomography (UOT)
- Details UOT
- Current status and plans

Where are we?

LUND UNIVERSITY Testing and analyzing the UOT concept

More from the experimental set-up

LUND UNIVERSITY

IIND

Project partners

UNIVERSITY Faculty of Engineering (LTH)

- Dept of Physics: Andreas Walther, Lars Rippe, Stefan Kröll
- Dept of Biomedical Engineering: Magnus Cinthio, (Tomas Jansson)
- Dept of Electrical and Information Technology: Mats Gustafsson
- Faculty of Medicin, LU
- Dept of Clinical Sciences: Lars Edvinsson (Ischemia, animal models)
- Dept of Translational Medicine: Sophia Zackrisson (*mammography, PAT*)
- Non University partners
- SpectraCure AB
- International partners:
- University College Cork: Stefan Andersson-Engels
- Lihong Wang, Caltech

More from the experimental set-up

LUND UNIVERSITY

Every piece of equipment should be mountable in an 19 inch rack

Hemoglobin oxygenation

Plans

LUND UNIVERSITY

Crystals Shanghai & Pisa (+Bozeman)
Laser system procurement (dedicated setup)

IIND

Tissue properties

UNIVERSITY	/luscle @880 nm	Breast@880 nm	Scalp/skull	Brain
Absorption coefficient	0.2 cm ⁻¹	0.08 cm ⁻¹	0.095 cm ⁻¹	0.14 cm ⁻¹
Scattering coefficient	50 cm ⁻¹	100 cm ⁻¹	120 cm ⁻¹	40 cm ⁻¹
Transport scattering coefficier	nt 5 cm ⁻¹	10 cm ⁻¹	12 cm ⁻¹	4 cm ⁻¹

According to simulations measurements can reach slightly larger depths in breast and brain tissue than in muscle tissue Gunther, Walther Rippe Kröll & Andersson-Engels, J. of Biomed. Optics **23**, 071209 (2018)

LUND UNIVERSITY

Plans

- Crystals Shanghai & Pisa (+Bozeman)
- Laser system procurement (dedicated setup)
- Continued testing of performance
- 3D tissue models? (Nina Reistad, Magnus Cinthio)

- Objective
- Motivation
- Optical properties of tissue
- Photo-acoustic tomography (PAT)
- Ultrasound optical tomography (UOT)
- Details UOT
- Current status and plans

Quantum Information Group

Lars Rippe

Andreas Walther

Chunyan Shi

Sebastian Horvath

Adam Kinos

Alexander Bengtsson

Hafsa

Syed

Vassily Kornienko

Saskia Bondza

Andre Nuesslein

Mohammed Alqedra

Thank you