

Optical detection of photoacoustic signals

Stefan Kröll

Cooperation with SpectraCure AB

Quantum Information Group Dept. of Physics, Lund University

Knut och Alice

Wallenbergs

Stiftelse

Funded by the European Union

General objective

- Developing a technique that can perform optical imaging with sub mm resolution down to substantial depths in the body
- Optical imaging is able to provide molecule specific information not obtainable by e.g. X-rays, ultrasound or magnetic resonance imaging
- We would like to reach large depths and to carry out measurements within a short time

Comparison of techniques

- Photoacoustic Tomography (PAT) (Konventionell fotoakustik)
- Ultrasound optical tomography (UOT) (Optisk ultraljudstomografi)

Comparison of penetration depth & S/N for **oxygenation measurements using PAT & UOT**

LUND UNIVERSITY

Light source inside – Double distance

Does theory and experiment agree?

Spatial resolution: ~30 elements, ~3x3x3 mm each, measurement time, ~3s

Carrier and tagged light transmission vs phantom thickness Comparison with simulations

Signal strength and shape

3.5 cm phantom

Light speed reduces from 300.000 km/s to 2 km/s

Reduced scattering coefficient 6.1/cm Absorption coefficient 0.008/cm Ultrasound frequency 1.6 MHz

LUND UNIVERSITY

Laser & phantom

More from the experimental set-up

LUND UNIVERSITY

Every piece of equipment should be mountable in an 19 inch rack

Hemoglobin oxygenation

Hemoglobin oxygenation

LUND UNIVERSITY

Current status

- Simulations show significantly better signal-to noise than PAT as well as larger depth
- Experiments support simulation results
- Read to test materials at tissue transparent wavelengths

Future

- If the new materials work we are ready for real tissue mimicking (3D) phantoms and tests on healthy volunteers
- Development of mobile system for measurements on animal models

IND

Vävnadsegenskaper

Muscle @880 nm	Breast@880 nm	Scalp/skull	Brain
0.2 cm ⁻¹	0.08 cm ⁻¹	0.095 cm ⁻¹	0.14 cm ⁻¹
50 cm ⁻¹	100 cm ⁻¹	120 cm ⁻¹	40 cm ⁻¹
ent 5 cm ⁻¹	10 cm ⁻¹	12 cm ⁻¹	4 cm ⁻¹
	Muscle @880 nm 0.2 cm ⁻¹ 50 cm ⁻¹ 5 cm ⁻¹	Muscle @ 880 nm Breast@ 880 nm 0.2 cm^{-1} 0.08 cm^{-1} 50 cm^{-1} 100 cm^{-1} ent 5 cm^{-1}	Muscle @880 nmBreast@880 nmScalp/skull 0.2 cm^{-1} 0.08 cm^{-1} 0.095 cm^{-1} 50 cm^{-1} 100 cm^{-1} 120 cm^{-1} ent 5 cm^{-1} 10 cm^{-1} 12 cm^{-1}

According to simulations measurements can reach slightly larger depths in breast and brain tissue than in muscle tissue Gunther, Walther Rippe Kröll & Andersson-Engels, J. of Biomed. Optics 23, 071209 (2018)

Cooperation partners

Stefan Andersson-Engels Magnus Cinthio Tobias Erlöv Johannes Swartling

Nina Reistad

Quantum Information Group

Lars Rippe

Andreas Walther

Chunyan Shi

Sebastian Horvath

Adam Kinos

Alexander Bengtsson

Hafsa

Syed

Vassily Kornienko

Saskia Bondza

Andre Nuesslein

Mohammed Alqedra

Thank you